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The steady movement of a fluid meniscus in a circular capillary tube is analysed by 
means of finite-element numerical simulation for a range of values of contact angles 
and contact-line velocities with minute slippage of the fluid on the tube wall, thus 
relaxing the conventional no-slip boundary condition. The resulting flow field does 
not produce unbounded forces at contact line, contrary to that with the no-slip condi- 
tion. The unknown meniscus shape is determined by an iterative scheme in which the 
imbalance in the normal-stress boundary condition is the basis for improving the 
shape. Comparison of the numerical results found here and the experimental results 
of a number of investigators suggests the possibility that the contact angle does 
not vary with contact-line velocity. 

1. Introduction 
Wetting and dewetting of solids by fluids involve the movement over solid surfaces 

of the solid/fluid/gas line of contact. A moving contact line can be found in many 
different situations; some cases in which it plays a central role are the spreading of 
adhesives, the flowing of lubricants into inaccessible locations, the coating of solid 
surfaces with a thin uniform layer of fluid and the displacement of oil by water through 
a porous medium. 

To understand the dynamics of the contact-line movement we must solve the 
Navier-Stokes equation with applied boundary-conditions for the flow of fluid over 
the solid surface. However as shown by Moffatt (1964), Huh & Scriven (1971), and 
as discussed further by Dussan V. & Davis (1974), unbounded forces are then produced 
a t  the contact line. This singularity arises from the use of the conventional no-slip 
condition of fluid mechanics on the solid surface. Since, for the contact line to move, 
adjacent fluid elements must be brought to (or removed from) the solid surface. The 
adjacent elements then assume the velocity of the contact line, but a t  the same time 
they should not move on the solid surface, if we enforce the no-slip condition; doing 
this, however, creates a discontinuity in velocity at  the contact line Dussan V. & Davis 
(1974). 

This anomaly can be remedied in various ways (see Dussan V. 1976; Hocking 1976, 
1977; Huh & Mason 1977). In  this paper we consider the most widely used remedy and 
permit the fluid to slip along the solid surface. The theoretical justification for the 
replacement of the no-slip condition by a slip condition, in problems involving a 
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moving contact line, was discussed by Hocking (1976). Note however, that no relevant 
experiments have been performed to document slip for flow near a moving contact 
line. Of course the slip condition must become the conventional, and proved experi- 
mentally, no-slip condition away from the moving contact line. 

To study the possibility of slippage near to the moving contact line, Huh & Mason 
(1977) considered the steady movement of a fluid meniscus displacing air or its own 
vapour in a circular capillary. However, they restricted their study to the systems for 
which the meniscus shape is approximately flat everywhere. In  $ 2 we consider the 
problem with a more general meniscus shape. The solutions are generated by the 
finite-element method, which has advantages over other available methods, as dis- 
cussed in $ 3 .  The iterative scheme used to determine the meniscus shape is described 
in $ 4. The results are discussed in $5. We shall be concerned primarily with the shape 
of the meniscus since the velocity and pressure fields exhibit similar features to those 
obtained by Huh & Mason (1977) for the flat meniscus. I n  particular, the present work 
is based on the assumption that the contact angle 0, (defined as the angle formed by 
the meniscus and the solid surface a t  the moving contact line) does not vary with 
contact-line velocity, and this assumption is supported by the comparison between 
calculated and experimentally observed meniscus shapes. 

2. Capillary flow 
Consider the steady movement of a fluid meniscus displacing air or its own vapour 

in a circular capillary. The tube radius a is sufficiently small that the effect of gravity 
is negligible i.e. pga2/y < I ,  where p is the fluid density, g is the acceleration due to 
gravity and y is the fluid/gas interfacial tension. To express the hydrodynamic prob- 
lem of the meniscus movement in a convenient mathematical form, we assume that 
all dependent and independent variables have been non-dimensionalized with respect 
to the tube radius a, the contact-line velocity U and a characteristic pressure p u l a ,  
where p is the fluid viscosity. By virtue of the axial symmetry of the meniscus, it can 
be described by x2 = h(x,) in cylindrical co-ordinates xi moving with the meniscus 
(see figure I ) ,  where h(0) = 0. If the Reynolds number paU/p is small (in this paper 
it is always less than the flow field behind the meniscus formed by an incom- 
pressible Newtonian fluid can be determined by solving the creeping-flow approxima- 
tion to the Navier-Stokes equation 

cik,k = 0, (2.1) 

where ( ) ,i denotes covariant differentiation with respect to xi, the usual summation 
convention is employed for repeated indices, cij is the stress tensor with components 

p is the fluid pressure, Sij are the components of the unit tensor and ui are the velocity 
components in the xi co-ordinates. I n  this notation the continuity equation can be 
written as 

Uk,k  = 0. (2.3) 

The boundary conditions to be applied to the coupled system (2.1) to (2.3) are as 
follows (see figure 2):  
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FIGURE 1.  Schematic diagram of a fluid meniscus moving steadily in 
a circular capillary tube. 

(i) Vanishing normal component of fluid velocity on the tube wall: 

u1 = 0 on x1 = 1 .  (2.4) 

(ii) The slip condition to be applied on the tube wall is the classical slippage boun- 
dary condition that the slip velocity is proportional to the shear stress exerted on the 
tube wall : 

2 
gI2 = -;(l+u2) on x1 = 1, (2.5) 

where E = l /a  and 1 is the characteristic length which provides an indication of the 
size of the region near to the contact line where slip is important. Different slip con- 
ditions have been used by Dussan V. (1976) and Huh & Mason (1977), however, they 
showed that, while many differences exist on the slip length scale for the different 
conditions, few, if any, are perceptible on the meniscus length scale, provided E 4 1.  
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FIGURE 2. Boundary conditions for the problem of a fluid meniscus 
moving steadily in a circular capillary tube. 

(iii) Vanishing normal component of fluid velocity on the meniscus: 

U, (e u k n k )  = 0 On x2 = h, ( 2 4  

where ni is the normal to the meniscus. 
(iv) Vanishing tangential stress on the meniscus: 

grit ( n j g j k t k )  = 0 on x2 = h, (2.7) 

where ti is the tangent to  the meniscus. 
(v) Balancing of the normal stress and the capillary pressure on the meniscus: 

where Ca is the capillary number p U l y  (a ratio of viscous to surface forces) and R is 
the mean curvature of the meniscus. 

(vi) Vanishing normal component of fluid velocity on the tube centre-line: 

u1 = 0 on x1 = 0. (2.9) 
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(vii) Vanishing tangential stress on the tube centre-line : 

cr12 = 0 on x1 = 0. (2.10) 

ul = 0 as x,+ -a. (2.11) 

(viii) Vanishing radial component of fluid velocity at a large distance upstream: 

(ix) Vanishing axial component of axial fluid velocity gradient a t  a large distance 
upstream : 

_ -  au2 - o as x 2 +  -a. 
ax2 

(2.12) 

The numerical solution procedure used to solve the coupled system (2.1) to (2.3) 
with applied boundary conditions (2.4) to (2.12), is described in the following section 
and is a particular formulation of the general method known as the finite-element 
method. 

3. Finite-element formulation 
I n  the finite-element method, the flow domain is divided into geometrically simple 

subdomains (elements), usually triangles or quadrilaterals. Within each element a 
number of points, called nodes, are identified. The dependent variables are approxi- 
mated locally over the element by continuous functions, usually low-order poly- 
nomials, defined in terms of the values of the dependent variables at the nodes. A set 
of equations for the nodal point unknowns of each element are found by using a 
Galerkin weighted residual method in which the error resulting from the substitution 
of the approximate functions into the governing differential equations, is distributed 
over the whole flow domain. This distribution is such that, on average, the partial 
differential equations are obeyed. Finally, an assembly of the elements and their 
corresponding equations through the connexion of appropriate nodes yields a discrete 
analogue to the original continuous problem. 

For a general discussion of the finite-element method, with applications to con- 
tinuum mechanics, see for example Zienkiewicz (1977) and Desai & Abel (1972); and 
more specifically for fluid mechanical applications, see for example Chung (1978), 
Oden et al. (1974) and Taylor, Morgan & Brebbia (1978). 

The finite-element method has aspects which suit it well to the problem considered 
here. First, the elements need not have uniform size and shape, so that irregular 
domains, those bounded by other than co-ordinate surfaces, require no special hand- 
ling, a significant advantage for free-surface flow problems, which by their nature 
occur on irregular domains. In  addition, the fact that element sizes need not be uniform 
means that computational power can be deployed efficiently by using small elements 
in regions of rapid variations of the dependent variables, near to the contact line for 
instance, and large ones elsewhere. Second, the slippage boundary condition on the 
tube wall (2.5) and the vanishing tangential stress on the meniscus (2.7) and on the 
tube centre-line (2.10) enter into the finite-element method in a particularly simple 
way. Separately constructed approximations to such boundary conditions are not 
required as they are in finite-difference methods. The price to be paid for these ad- 
vantages is the complexity of the resulting computer programs, which are substantially 
more difficult to develop than corresponding finite-difference programs. 
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Due to the local nature of the approximation of the dependent variables, each 
element may be considered individually for purposes of equation formulation. For 
the present problem let the velocity and pressure be represented within an element by 

ui = #auai, P = lkaPa, (3.1), (3.2) 

where uai and pa  are the values of ui and p respectively a t  node a, $a and yka are the 
corresponding interpolation functions and for each element the Greek indices take 
values up to a maximum of the number of local nodes associated with a particular 
quantity (for the element we shall use these maxima are 6 for the velocity components 
and 3 for the pressure). The only conditions imposed on the interpolating functions 
are to ensure that the dependent variables are compatible a t  the interface between 
two elements (see for example Desai & Abel 1972, p. 178). These conditions are auto- 
matically satisfied €or the polynomials used in the ensuing analysis. 

Introducing relations (3.1) and (3.2) into equations (2.1) and (2.3) yields residuals, 
corresponding to each equation, since in general the equations will not be satisfied 
identically. We can guarantee that the residual of each equation vanishes in an average 
sense over the element by requiring that it is orthogonal to the sub-space spanned by 
the interpolation function of the dependent variable associated with that equation, 
a Galerkin weighted residual method. The Galerkin weighted residual equations 
corresponding to equations (2.1) and (2.3) are 

r 

c 

where V is the volume of the element. Use of the divergence theorem on equation (3.3) 
yields 

where aV is the boundary of the element and n, is the outward-pointing normal unit 
vector on aV. The primary reason for applying the divergence theorem is to enable us 
to apply the boundary conditions (2.5), (2.7) and (2.10) in a particularly simple way. 
It also lowers the order of the highest derivative and so requires a degree less of con- 
tinuity in the interpolation functions, and is numerically more sound. 

If we now introduce equations (2.2), (3.1) and (3.2) into equations (3.4) and (3.5), 
we obtain the following linear algebraic equations associated with each element in 
the flow field 

We can rewrite the equations 

(3.8) 

(3.9) 
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' where 

FIGURE 3. Basic triangular subelement nodal variables. 

P 

(3.10) 

(3.11) 

(3.12) 

The above derivation has been concerned with a single finite-element and the limited 
portion of the flow domain it represents. The discrete representation of the entire flow 
domain is obtained through an assemblage of elements such that inter-element con- 
tinuity of the approximate velocity components and pressure is enforced. This 
continuity requirement is met through the appropriate summation of equations for 
nodes common to adjacent elements (the so-called 'direct stiffness ' approach Zien- 
kiewicz 1977). The result of such an assembly process is a system of matrix equations 
of the form given by equations (3.8) and (3.9).  Note that the assembled form of the 
surface integral on the element boundary on the right-hand side of equation (3.8) is 
a surface integral on the boundary of the entire flow domain. 

The various boundary conditions for the present problem (2.4) to (2.12), are applied 
to the assembled equations in two distinct ways. The boundary conditions (2.4), (2.6), 
(2.9) and (2.11) are applied by replacing the equations for the particular degrees of 
freedom by equations enforcing the boundary conditions. In  contrast, the boundary 
conditions ( 2 . 5 ) ,  (2.7),  (2.8),  (2.10) and (2.12) are applied by substituting them in the 
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surface integral on those element boundaries making up the part of the boundary of 
the flow domain where the boundary conditions are specified. Hence, the boundary 
conditions (2.4) to (2.12) enter into the finite-element formulation in a particularly 
simple way. 

The solution of the assembled unsymmetric banded linear algebraic equations for 
all nodal values of the velocity components and pressure is undertaken, using the 
variable-bandwidth band solution form of the Gaussian elimination method (see for 
example Zienkiewicz 1977, p. 718). For efficiency the assemblage and elimination 
processes are performed simultaneously. This is done by processing the nodes in a 
prescribed order so that the equations are eliminated as soon as they are completely 
formed. 

The basic finite-element used for the present problem is a 13 node, 31-degrees of- 
freedom quadrilateral (the elements are actually axisymmetric rings with quadrilateral 
cross-section) composed of four six-node, 15-degrees-of-freedom triangles. Within each 
triangular subelement, the velocity components ui are approximated using a quadratic 
interpolation function and the pressure p is approximated by a linear interpolation 
function. The arrangement of the nodal point variables is shown in figure 3. The inter- 
polation functions for each triangular subelement are given by 

(3.13) 

(3.14) 

where the ordering of the functions corresponds to the ordering of the unknowns 
shown in figure 3. The interpolation functions in equations (3.13) and (3.14) are 
expressed in terms of the natural or area co-ordinates for a triangle, L, (see for example 
Zienkiewicz 1977, p. 165). Note that the natural co-ordinates L, are not independent 
but are related by 

Ll+L2+L3 = 1. (3.15) 

The co-ordinate transformation between the physical co-ordiiates xi and the natural 
co-ordinates Li is obtained from the parametric concept discussed by Ergatoudis, 
Irons and Zienkiewicz (1968). Although this transformation can be quite general we 
shall restrict ourselves to the particular case of an isoparametric element where the 
interpolation functions defining the dependent variables are of the same order as the 
interpolation functions defining the element geometry. That is, the co-ordinate trans- 
formation is given by 

xi = $aXai, (3.16) 

where xai are the values of xi at node a. In  particular, a quadratic interpolation of the 
element boundary is possible and hence, the element boundaries can closely follow 
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those meniscus profiles found in the present problem. The construction of the element 
matrices defined by equations (3.10) and (3.11) requires the computation of various 
derivatives and integrals of the interpolation functions given in equations (3.13) and 
(3.14). Since the interpolation functions are given in terms of the natural co-ordinates 
L, and the derivatives and integrals are in terms of the physical co-ordinates x . ~  the 
following relations need to be defined 

= Jik$a,k, (3.17) 

where L, has been expressed in terms of L, and L, using equation (3.15) and 

(3.18) 

is the Jacobian matrix of the transformation. Inverting the Jacobian matrix provides 
the needed relation for the derivatives of the interpolation functions 

(3.19) 

To complete the transformation from physical co-ordinates xi to natural co-ordinates 
.Li, the expression for an elemental volume is required. This is given by 

dV = x , ~ x , ~ x , ~ x ,  

= #8xB1 det Jii dL, dL, dx,, (3.20) 

where x3 is the circumferential co-ordinate of the cylindrical co-ordinates xi and det 
indicates the determinant of a matrix. Use of the relations given in equations (3.19) 
and (3.20) allows the element matrices defined by equations (3.10) and (3.11) to be 
expressed as integrals of rational functions in the L, co-ordinate system. The evaluation 
of such integrals requires a numerical quadrature procedure and the Gauss-Radau 
formula is used (see for example Zienkiewicz 1977, p. 200). After assembling the 
equations from the four triangles, using the ‘direct stiffness ’ approach described 
previously, the eleven interior degrees of freedom associated with the common side 
nodes and the quadrilateral centroid are condensed numerically from the system, 
resulting in substantial computational savings, and are then found after the solution 
has been obtained for the retained degrees of freedom. 

If one attempts to use equal order interpolation for the velocity components and 
pressure, then a singular system of equations arises Schneider, Raithby & Yovanovich 
(1978). It was demonstrated in Schneider et al. (1978) that the emergence of the 
singular system of equations results from the application of boundary conditions to 
the finite-element equations. The flexibility to interpolate pressure to an equal or 
perhaps higher order than the velocity components can be gained by replacing the 
continuity equation (2.3) by a Poisson equation, obtained by taking the curl of the 
vector equation (2.1) and using the continuity equation (2.3), for pressure Schneider 
P t  n2. ( 1  978). 
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4. Meniscus profile scheme 
Since the meniscus profile is not known a priori, some sort of iterative scheme is 

needed to determine it. When motion is steady the three boundary conditions on the 
meniscus are given by equations (2.6) to (2.8), that is, (i) no normal component of 
fluid velocity on the meniscus, (ii) no tangential stress on the meniscus and (iii) 
balancing of normal stress and capillary pressure on the meniscus. All iterative 
schemes employ a similar strategy. First a profile of the meniscus is chosen, either by 
an informed guess or on the basis of the previous iterations. The Navier-Stokes and 
continuity equations are solved for the velocity and pressure fields in the fluid, but 
only two of the three boundary conditions on the meniscus are satisfied. The third 
boundary condition is then used to decide how to alter the meniscus profile, and the 
process is repeated to convergence. A fuller discussion of the various schemes, with 
references, can be found in Orr & Scriven (1978). 

The iterative scheme employed in the present work is a normal-stress scheme in 
which the imbalance in the normal-stress boundary condition is the basis for improving 
the meniscus profile. Before describing the iterative scheme in detail we derive a form 
of the normal-stress boundary condition (2.8) which is particularly well suited for the 
present problem. 

Substituting an expression for the mean curvature of the meniscus (see Huh & 
Mason 1977) in the normal-stress boundary condition (2.8) gives 

If 8 denotes the angle a t  a given value of x1 between a tangent line to the meniscus 
profile and a line parallel to the tube wall, then 

dh  - = cote  
dx1 

and equation (4.1) can be written as 

(xlcos8) on x2 = h. vnn = --- l i d  
Ca x1 ax, (4.3) 

Integrating equation (4.2) with respect to x1 and using the boundary conditions 
cos8 = 0 and h = 0 on x1 = 0, and multiplying equation (4.3) by x1 and integrating 
with respect to xl, we obtain for the equation for the meniscus profile 

where 

The normal-stress iterative scheme used to determine the meniscus profile is as 

(1) Guess a meniscus profile. In the present work this was a flat meniscus profile. 
follows. 
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(2) Solve the Navier-Stokes and continuity equations for the velocity and pressure 
in the fluid, imposing only the boundary conditions (2.4) to (2.7) and (2.9) to (2.12). 

(3) Calculate the values of the normal stress of the fluid on the meniscus unn a t  
discrete values of xl. Note that the pressure, and as a consequence un,, is determined 
only up to a constant since it does not appear in any of the applied boundary conditions. 
However, using the boundary condition 8 = 6, on x1 = 1, equation (4.5) gives 

cos 8, = Ca xi cnn dxi so’ 
and this integral constraint sets the level of unn, and hence the pressure, in the flow 
field. 
(4) Use the values of u,, to integrate (4.4) and (4.5) numerically, and thereby 

obtain a new meniscus profile. 
(5) Repeat steps (2) to (4) until the change in meniscus profile is below a specified 

tolerance. 
The above iterative scheme generated convergent solutions for all cases attempted 

(see 5 5). Usually three to five iterations were sufficient to reduce the maximum change 
in any of the meniscus nodes to less than 

5. Results and discussion 
TO calculate the flow field and the meniscus profile for the fluid/solid systems which 

have been employed in the literature, using the numerical techniques described in 
$53 and 4, we must know the slip length 1 (see equation (2.5)) for the systems. It 
should be possible to determine the appropriate value of 1 for a given system by using 
the theoretical analysis to predict some measurable physical quantities, for example 
the force on a length of tube in contact with the fluid. Because this value is not avail- 
able, we shall be consistent with the work of Huh & Mason (1977) and set 1 equal to a 
lower bound of 10-7 cm (that is, the average diameter of a fluid molecule). This choice 
of 1 gives the largest possible deformation due to viscous forces. For completeness, we 
also consider the effect, on the meniscus profile for a particular system, of varying 1. 

It should be noted that a semi-infinite flow domain must be dealt with in the present 
problem. In order to economize on the size of the flow domain to be computed, we 
have used knowledge of the analytical solutions obtained for a flat meniscus profile 
(Huh & Mason 1977). These analytical solutions suggest that the computational flow 
domain need only extend to a distance of one tube diameter upstream of the part of 
the meniscus with the minimum value of h. Note that the boundary conditions (2.11) 
and (2.12) are then applied to this computational flow domain. This distance of one 
diameter tube has also been verified for flat and also more general meniscus profiles 
by numerical experimentation. 

A typical finite-element mesh used in the numerical computations is illustrated in 
figure 4. This mesh was established based on the expected behaviour of the solution. 
From the work of Huh & Mason (1977) it  is known for a flat meniscus profile that a t  
the contact line the pressure and velocity gradients have a weak singularity vaving 
as the logarithm of the distance from the contact line. For the triangular subelements, 
which interpolate both the pressure and velocity gradients linearly over each element, 
to represent the solution adequately it is clear that the elements must become 

F L M  lox 
21 
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0 
FIUIJI~E 4. Finite-element mesh pattern for 19, = 69O, a = 0.978mm, I = lO-’cm, Cu = 0. 
The first three levels of local mesh refinement near to the contact line are shown t o  10 times the 
scale of the remainder of the mesh. 

progressively smaller the nearer they are to the contact line. This was accomplished 
using a systematic local mesh refinement scheme. The number of levels of local 
refinement (only the first three levels are shown in figure 4) is dependent on the value 
of E ,  and should be such that the meniscus profile is unchanged €or further levels of 
refinement. In general it  was found that the smallest element should have a size at  least 
four orders of magnitude less than c. 

In  the numerical computations we assume, for reasons that will be apparent later, 
that the contact angle 0, for a particular system does not vary with contact-line 
velocity. The values of the relevant physical quantities 8,) a and Ca, are those from 
experiments conducted by Rose & Heins (1962),Hansen & Toong (1971~) and Hoffman 
(1975). Figure 5 shows the meniscus profiles for various values of S,, a and Ca. The 
profiles are good approximations to those found in the experiments. Figure 6 shows 
the corresponding values of the meniscus slope. Clearly the slope is a strong function 
of x1 near t.0 the contact line in the dynamic cases. Figure 7 shows the meniscus profile 
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FIGURE 5 .  Meniscus profiles for (a) 8, = 69", a = 0.978 mm, 1 = 10-7 cm and 
(a) 8, = 21", a = 1.19 mm, 2 = 10-7 om. 

and meniscus slope for a range of values of I ,  for a particular set of values of S,, a and 
Ca. It is clear that the profile is sensitive to the magnitude of 1. 

In  many experimental studies the contact angle was measured as a function of 
contact-line velocity. The commonest rn-ethod of contact-angle measurement has 
been used, for instance, by Rose & Heins (1962), Hansen & Toong (197 1 a) and Hoffman 
(1975). The axial distance h( I )  between the centre-line position of the meniscus and 
the contact line is first measured on photographs of the meniscus. The meniscus is then 
assumed to be approximated by a spherical sector which has the same axial position 
as the meniscus at the tube centre-line and wall. Therefore, the 'measured contact 
angle ', eSp, is defined to be the angle formed by this spherical sector and the tube 
wall at the tube wall and is given by the equation 

One unsettling question is whether or not the measured eez was indeed the real 
contact angle 0,. If severe deformation of the meniscus occurs near to the contact line 

21-2 
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(at a distance from the line a t  which it is impossible to detect experimentally, that is, 
less than cm) owing to viscous forces, as Hansen & Toong (1971 b )  pointed out, 
the meniscus will no longer be approximated by a spherical sector there and the signi- 
ficance of the contact-angle measurements will therefore be in doubt. 

A comparison of the values found in the numerical calculations 8E1 - 8, (where we 
have assumed that the real contact angle 0, does not vary with contact-line velocity 
and also that I = lo-' cm, and we have used equation (5.1) to define O$,l) and observed 
in experiments 8:gp - 8, are shown in table 1 for the experimental data of Rose & Heins 
(1962), Hansen & Toong ( 1 9 7 1 ~ )  and Hoffman (1975). The values 8gl-8, are good 
approximations to ee;: - S,, which supports the assumption that the real contact 
angle does not vary with contact-line velocity and also suggests that O$%P, which was 
measured as the real contact angle, was in fact an apparent contact angle. Of course, 
this may not be the case for all fluid/solid systems. 

The possibility that S%P is only an apparent contact angle and that the real contact 
angle does not vary with contact-line velocity, has already been discussed by Huh & 
Mason (1977). In  table 1 ,  we also list the values 195j:l- 8, calculated by Huh & Mason. 
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FIGURE 7. (a) Meniscus profiles and (a) meniscus slope for Be = 69O, 
a = 0*978mm, CU = 0.0211. 

For the first two systems in table 1, Huh & Mason agree with the conclusions reached 
in the present work. However, they wrongly conclude for the last two systems in 
table 1, using an expression that they admit is strictly inappropriate for such systems 
with low values of Ssp (because it was derived from expressions for the velocity and 
pressure fields obtained for a flat meniscus profile), that the real contact angle varies 
with contact-line velocity. Note that, the Huh & Mason definition of 0;:’ differs 
slightly from that of equation (5.1). They effectively assume that the meniscus can be 
approximated by a spherical sector which has the same radius and axial position as 
the meniscus a t  the tube centre-line. Therefore, Huh & Mason effectively define 0%’ 
to be the angle formed by this spherical sector and the tube wall a t  the tube walI. 
Since the meniscus is an exact spherical sector only in the static case, it is inevitable 
that the two definitions are not equivalent. However, it  can be shown, for the systems 
and values of Ca used in table I ,  that the difference between the values of 0%’ for the 
two definitions is small. In fact, in the numerical calculations for table 1 the percentage 
difference between the values of Sgl for the two definitions increased with Ca for a 
particular system and ranged from 0.9 yo to 3.6 Yo. 

I should like to t!hank the Science Research Council for financial support. 



646 J . L o d e s  

Calculated Calculated 
Pi' - 8, Experimontal 8ca' dl -80 

System Ca x loa (Present work) &z--B0 (Huh & Mason 1977) 
("1 ("1 ("1 

Admex 76O/air/glaas 2-11 26 21 23 
oc = 69", a = 0.978 mm 4.94 45 45 54 
(Hoffman 1975) 5.16 46 42 56 

7.38 58 45 81 
7-53 59 47 82 

Santicizer 405/air/glass 0.48 8.2 1.7 5.2 

(Hoffman 1975) 1.36 20 18 15 
4.36 43 48 48 
6.79 56 54 74 

8, = 67", a = 0.978 mm 0.89 14 8.2 9.7 

Nu j ol/air/glass 0.0635 7.3 4.8 0.7 
8, = 21°, a = 1-19 mm 0.132 13 10 1.5 
(Hansen & Toong 1971a) 0.196 16 13 2.2 

0.330 22 18 3.7 
0.428 26 20 4.7 

Nujol/air/glass 0.140 11 11 1.4 
Bc = 23", a = 0.33 mm 0.279 1 7  20 2.8 
(Rose & Heins 1962) 0.419 23 27 4.2 

0.558 27 34 5.7 
0.698 31 42 7- 1 

TABLE 1. Comparison of the values of the measured contact angle calculated in the theoretical 
analyses of the present work and Huh & Mason (1977) ( 1  = lo-' cm) and those observed in 
experiments. 
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